Inkscape
Vector Graphics Editor
Loading...
Searching...
No Matches
sbasis-math.cpp
Go to the documentation of this file.
1/*
2 * sbasis-math.cpp - some std functions to work with (pw)s-basis
3 *
4 * Authors:
5 * Jean-Francois Barraud
6 *
7 * Copyright (C) 2006-2007 authors
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it either under the terms of the GNU Lesser General Public
11 * License version 2.1 as published by the Free Software Foundation
12 * (the "LGPL") or, at your option, under the terms of the Mozilla
13 * Public License Version 1.1 (the "MPL"). If you do not alter this
14 * notice, a recipient may use your version of this file under either
15 * the MPL or the LGPL.
16 *
17 * You should have received a copy of the LGPL along with this library
18 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * You should have received a copy of the MPL along with this library
21 * in the file COPYING-MPL-1.1
22 *
23 * The contents of this file are subject to the Mozilla Public License
24 * Version 1.1 (the "License"); you may not use this file except in
25 * compliance with the License. You may obtain a copy of the License at
26 * http://www.mozilla.org/MPL/
27 *
28 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
29 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
30 * the specific language governing rights and limitations.
31 */
32
33//this a first try to define sqrt, cos, sin, etc...
34//TODO: define a truncated compose(sb,sb, order) and extend it to pw<sb>.
35//TODO: in all these functions, compute 'order' according to 'tol'.
36
37#include <2geom/d2.h>
38#include <2geom/sbasis-math.h>
39#include <stdio.h>
40#include <math.h>
41//#define ZERO 1e-3
42
43
44namespace Geom {
45
46
47//-|x|-----------------------------------------------------------------------
52 return abs(Piecewise<SBasis>(f));
53}
58 Piecewise<SBasis> absf=partition(f,roots(f));
59 for (unsigned i=0; i<absf.size(); i++){
60 if (absf.segs[i](.5)<0) absf.segs[i]*=-1;
61 }
62 return absf;
63}
64
65//-max(x,y), min(x,y)--------------------------------------------------------
69Piecewise<SBasis> max( SBasis const &f, SBasis const &g){
71}
76 return max(f,Piecewise<SBasis>(g));
77}
82 return max(Piecewise<SBasis>(f),g);
83}
88 Piecewise<SBasis> max=partition(f,roots(f-g));
89 Piecewise<SBasis> gg =partition(g,max.cuts);
90 max = partition(max,gg.cuts);
91 for (unsigned i=0; i<max.size(); i++){
92 if (max.segs[i](.5)<gg.segs[i](.5)) max.segs[i]=gg.segs[i];
93 }
94 return max;
95}
96
100Piecewise<SBasis>
101min( SBasis const &f, SBasis const &g){ return -max(-f,-g); }
105Piecewise<SBasis>
106min(Piecewise<SBasis> const &f, SBasis const &g){ return -max(-f,-g); }
110Piecewise<SBasis>
111min( SBasis const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }
115Piecewise<SBasis>
116min(Piecewise<SBasis> const &f, Piecewise<SBasis> const &g){ return -max(-f,-g); }
117
118
119//-sign(x)---------------------------------------------------------------
130 Piecewise<SBasis> sign=partition(f,roots(f));
131 for (unsigned i=0; i<sign.size(); i++){
132 sign.segs[i] = (sign.segs[i](.5)<0)? Linear(-1.):Linear(1.);
133 }
134 return sign;
135}
136
137//-Sqrt----------------------------------------------------------
139 double tol,
140 int order){
141 SBasis sqrtf;
142 if(f.isZero() || order == 0){
143 return Piecewise<SBasis>(sqrtf);
144 }
145 if (f.at0()<-tol*tol && f.at1()<-tol*tol){
146 return sqrt_internal(-f,tol,order);
147 }else if (f.at0()>tol*tol && f.at1()>tol*tol){
148 sqrtf.resize(order+1, Linear(0,0));
149 sqrtf[0] = Linear(std::sqrt(f[0][0]), std::sqrt(f[0][1]));
150 SBasis r = f - multiply(sqrtf, sqrtf); // remainder
151 for(unsigned i = 1; int(i) <= order && i<r.size(); i++) {
152 Linear ci(r[i][0]/(2*sqrtf[0][0]), r[i][1]/(2*sqrtf[0][1]));
153 SBasis cisi = shift(ci, i);
154 r -= multiply(shift((sqrtf*2 + cisi), i), SBasis(ci));
155 r.truncate(order+1);
156 sqrtf[i] = ci;
157 if(r.tailError(i) == 0) // if exact
158 break;
159 }
160 }else{
161 sqrtf = Linear(std::sqrt(fabs(f.at0())), std::sqrt(fabs(f.at1())));
162 }
163
164 double err = (f - multiply(sqrtf, sqrtf)).tailError(0);
165 if (err<tol){
166 return Piecewise<SBasis>(sqrtf);
167 }
168
169 Piecewise<SBasis> sqrtf0,sqrtf1;
170 sqrtf0 = sqrt_internal(compose(f,Linear(0.,.5)),tol,order);
171 sqrtf1 = sqrt_internal(compose(f,Linear(.5,1.)),tol,order);
172 sqrtf0.setDomain(Interval(0.,.5));
173 sqrtf1.setDomain(Interval(.5,1.));
174 sqrtf0.concat(sqrtf1);
175 return sqrtf0;
176}
177
181Piecewise<SBasis> sqrt(SBasis const &f, double tol, int order){
182 return sqrt(max(f,Linear(tol*tol)),tol,order);
183}
184
191 zero.setDomain(f.domain());
192 Piecewise<SBasis> ff=max(f,zero);
193
194 for (unsigned i=0; i<ff.size(); i++){
195 Piecewise<SBasis> sqrtfi = sqrt_internal(ff.segs[i],tol,order);
196 sqrtfi.setDomain(Interval(ff.cuts[i],ff.cuts[i+1]));
197 result.concat(sqrtfi);
198 }
199 return result;
200}
201
202//-Yet another sin/cos--------------------------------------------------------------
203
209Piecewise<SBasis> sin( SBasis const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));}
215Piecewise<SBasis> sin(Piecewise<SBasis> const &f, double tol, int order){return(cos(-f+M_PI/2,tol,order));}
216
222Piecewise<SBasis> cos(Piecewise<SBasis> const &f, double tol, int order){
224 for (unsigned i=0; i<f.size(); i++){
225 Piecewise<SBasis> cosfi = cos(f.segs[i],tol,order);
226 cosfi.setDomain(Interval(f.cuts[i],f.cuts[i+1]));
227 result.concat(cosfi);
228 }
229 return result;
230}
231
237Piecewise<SBasis> cos( SBasis const &f, double tol, int order){
238 double alpha = (f.at0()+f.at1())/2.;
239 SBasis x = f-alpha;
240 double d = x.tailError(0),err=1;
241 //estimate cos(x)-sum_0^order (-1)^k x^2k/2k! by the first neglicted term
242 for (int i=1; i<=2*order; i++) err*=d/i;
243
244 if (err<tol){
245 SBasis xk=Linear(1), c=Linear(1), s=Linear(0);
246 for (int k=1; k<=2*order; k+=2){
247 xk*=x/k;
248 //take also truncature errors into account...
249 err+=xk.tailError(order);
250 xk.truncate(order);
251 s+=xk;
252 xk*=-x/(k+1);
253 //take also truncature errors into account...
254 err+=xk.tailError(order);
255 xk.truncate(order);
256 c+=xk;
257 }
258 if (err<tol){
259 return Piecewise<SBasis>(std::cos(alpha)*c-std::sin(alpha)*s);
260 }
261 }
262 Piecewise<SBasis> c0,c1;
263 c0 = cos(compose(f,Linear(0.,.5)),tol,order);
264 c1 = cos(compose(f,Linear(.5,1.)),tol,order);
265 c0.setDomain(Interval(0.,.5));
266 c1.setDomain(Interval(.5,1.));
267 c0.concat(c1);
268 return c0;
269}
270
271//--1/x------------------------------------------------------------
272//TODO: this implementation is just wrong. Remove or redo!
273
275 if (order>=0){
276 for (auto & seg : f.segs){
277 seg.truncate(order);
278 }
279 }
280}
281
283 Piecewise<SBasis> reciprocal_fn;
284 //TODO: deduce R from tol...
285 double R=2.;
286 SBasis reciprocal1_R=reciprocal(Linear(1,R),3);
287 double a=range.min(), b=range.max();
288 if (a*b<0){
289 b=std::max(fabs(a),fabs(b));
290 a=0;
291 }else if (b<0){
292 a=-range.max();
293 b=-range.min();
294 }
295
296 if (a<=tol){
297 reciprocal_fn.push_cut(0);
298 int i0=(int) floor(std::log(tol)/std::log(R));
299 a = std::pow(R,i0);
300 reciprocal_fn.push(Linear(1/a),a);
301 }else{
302 int i0=(int) floor(std::log(a)/std::log(R));
303 a = std::pow(R,i0);
304 reciprocal_fn.cuts.push_back(a);
305 }
306
307 while (a<b){
308 reciprocal_fn.push(reciprocal1_R/a,R*a);
309 a*=R;
310 }
311 if (range.min()<0 || range.max()<0){
312 Piecewise<SBasis>reciprocal_fn_neg;
313 //TODO: define reverse(pw<sb>);
314 reciprocal_fn_neg.cuts.push_back(-reciprocal_fn.cuts.back());
315 for (unsigned i=0; i<reciprocal_fn.size(); i++){
316 int idx=reciprocal_fn.segs.size()-1-i;
317 reciprocal_fn_neg.push_seg(-reverse(reciprocal_fn.segs.at(idx)));
318 reciprocal_fn_neg.push_cut(-reciprocal_fn.cuts.at(idx));
319 }
320 if (range.max()>0){
321 reciprocal_fn_neg.concat(reciprocal_fn);
322 }
323 reciprocal_fn=reciprocal_fn_neg;
324 }
325
326 return(reciprocal_fn);
327}
328
329Piecewise<SBasis> reciprocal(SBasis const &f, double tol, int order){
330 Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol);
331 Piecewise<SBasis> result=compose(reciprocal_fn,f);
333 return(result);
334}
336 Piecewise<SBasis> reciprocal_fn=reciprocalOnDomain(*bounds_fast(f), tol);
337 Piecewise<SBasis> result=compose(reciprocal_fn,f);
339 return(result);
340}
341
349Piecewise<SBasis> interpolate(std::vector<double> times, std::vector<double> values, unsigned smoothness){
350 assert ( values.size() == times.size() );
351 if ( values.empty() ) return Piecewise<SBasis>();
352 if ( values.size() == 1 ) return Piecewise<SBasis>(values[0]);//what about time??
353
354 SBasis sk = shift(Linear(1.),smoothness);
355 SBasis bump_in = integral(sk);
356 bump_in -= bump_in.at0();
357 bump_in /= bump_in.at1();
358 SBasis bump_out = reverse( bump_in );
359
361 result.cuts.push_back(times[0]);
362 for (unsigned i = 0; i<values.size()-1; i++){
363 result.push(bump_out*values[i]+bump_in*values[i+1],times[i+1]);
364 }
365 return result;
366}
367
368}
369
370/*
371 Local Variables:
372 mode:c++
373 c-file-style:"stroustrup"
374 c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
375 indent-tabs-mode:nil
376 fill-column:99
377 End:
378*/
379// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
constexpr C min() const
constexpr C max() const
Range of real numbers that is never empty.
Definition interval.h:59
Function that interpolates linearly between two values.
Definition linear.h:55
Function defined as discrete pieces.
Definition piecewise.h:71
Interval domain() const
Definition piecewise.h:215
unsigned size() const
Definition piecewise.h:131
void push(const T &s, double to)
Convenience/implementation hiding function to add segment/cut pairs.
Definition piecewise.h:141
void push_seg(const T &s)
Definition piecewise.h:157
void push_cut(double c)
Definition piecewise.h:152
std::vector< double > cuts
Definition piecewise.h:75
void concat(const Piecewise< T > &other)
Definition piecewise.h:235
std::vector< T > segs
Definition piecewise.h:76
void setDomain(Interval dom)
Definition piecewise.h:218
Polynomial in symmetric power basis.
Definition sbasis.h:70
size_t size() const
Definition sbasis.h:76
bool isZero(double eps=EPSILON) const
Definition sbasis.h:195
Coord at1() const
Definition sbasis.h:214
double tailError(unsigned tail) const
bound the error from term truncation
Definition sbasis.cpp:49
void resize(unsigned n)
Definition sbasis.h:98
Coord at0() const
Definition sbasis.h:212
void truncate(unsigned k)
Definition sbasis.h:252
Css & result
double c[8][4]
Lifts one dimensional objects into 2D.
const unsigned order
auto floor(Geom::Rect const &rect)
Definition geom.h:131
Various utility functions.
Definition affine.h:22
SBasisN< n > cos(LinearN< n > bo, int k)
Piecewise< SBasis > signSb(SBasis const &f)
Return the sign of the two functions pointwise.
Bezier reverse(const Bezier &a)
Definition bezier.h:342
Piecewise< SBasis > reciprocalOnDomain(Interval range, double tol=1e-3)
MultiDegree< n > max(MultiDegree< n > const &p, MultiDegree< n > const &q)
Returns the maximal degree appearing in the two arguments for each variables.
Definition sbasisN.h:158
Bezier multiply(Bezier const &f, Bezier const &g)
Definition bezier.h:337
SBasisN< n > reciprocal(LinearN< n > const &a, int k)
static float sign(double number)
Returns +1 for positive numbers, -1 for negative numbers, and 0 otherwise.
SBasisN< n > sqrt(SBasisN< n > const &a, int k)
Piecewise< SBasis > interpolate(std::vector< double > times, std::vector< double > values, unsigned smoothness=1)
Returns a Piecewise SBasis with prescribed values at prescribed times.
SBasisOf< T > shift(SBasisOf< T > const &a, int sh)
Definition sbasis-of.h:435
D2< T > compose(D2< T > const &a, T const &b)
Definition d2.h:405
std::vector< double > roots(SBasis const &s)
Bezier integral(Bezier const &a)
Definition bezier.cpp:294
static Piecewise< SBasis > sqrt_internal(SBasis const &f, double tol, int order)
Piecewise< SBasis > min(SBasis const &f, SBasis const &g)
Return the more negative of the two functions pointwise.
OptInterval bounds_fast(Bezier const &b)
Definition bezier.cpp:305
SBasisN< n > sin(LinearN< n > bo, int k)
Point abs(Point const &b)
void truncateResult(Piecewise< SBasis > &f, int order)
some std functions to work with (pw)s-basis