Inkscape
Vector Graphics Editor
Loading...
Searching...
No Matches
elliptical-arc-from-sbasis.cpp
Go to the documentation of this file.
1/*
6 * Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it either under the terms of the GNU Lesser General Public
10 * License version 2.1 as published by the Free Software Foundation
11 * (the "LGPL") or, at your option, under the terms of the Mozilla
12 * Public License Version 1.1 (the "MPL"). If you do not alter this
13 * notice, a recipient may use your version of this file under either
14 * the MPL or the LGPL.
15 *
16 * You should have received a copy of the LGPL along with this library
17 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * You should have received a copy of the MPL along with this library
20 * in the file COPYING-MPL-1.1
21 *
22 * The contents of this file are subject to the Mozilla Public License
23 * Version 1.1 (the "License"); you may not use this file except in
24 * compliance with the License. You may obtain a copy of the License at
25 * http://www.mozilla.org/MPL/
26 *
27 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
28 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
29 * the specific language governing rights and limitations.
30 */
31
32#include <2geom/curve.h>
33#include <2geom/angle.h>
34#include <2geom/utils.h>
35#include <2geom/bezier-curve.h>
37#include <2geom/sbasis-curve.h> // for non-native methods
41#include <algorithm>
42
43namespace Geom {
44
45// forward declaration
46namespace detail
47{
48 struct ellipse_equation;
49}
50
51/*
52 * make_elliptical_arc
53 *
54 * convert a parametric polynomial curve given in symmetric power basis form
55 * into an EllipticalArc type; in order to be successful the input curve
56 * has to look like an actual elliptical arc even if a certain tolerance
57 * is allowed through an ad-hoc parameter.
58 * The conversion is performed through an interpolation on a certain amount of
59 * sample points computed on the input curve;
60 * the interpolation computes the coefficients of the general implicit equation
61 * of an ellipse (A*X^2 + B*XY + C*Y^2 + D*X + E*Y + F = 0), then from the
62 * implicit equation we compute the parametric form.
63 *
64 */
66{
67 public:
68 typedef D2<SBasis> curve_type;
69
70 /*
71 * constructor
72 *
73 * it doesn't execute the conversion but set the input and output parameters
74 *
75 * _ea: the output EllipticalArc that will be generated;
76 * _curve: the input curve to be converted;
77 * _total_samples: the amount of sample points to be taken
78 * on the input curve for performing the conversion
79 * _tolerance: how much likelihood is required between the input curve
80 * and the generated elliptical arc; the smaller it is the
81 * the tolerance the higher it is the likelihood.
82 */
83 make_elliptical_arc( EllipticalArc& _ea,
84 curve_type const& _curve,
85 unsigned int _total_samples,
86 double _tolerance );
87
88 private:
89 bool bound_exceeded( unsigned int k, detail::ellipse_equation const & ee,
90 double e1x, double e1y, double e2 );
91
92 bool check_bound(double A, double B, double C, double D, double E, double F);
93
94 void fit();
95
96 bool make_elliptiarc();
97
98 void print_bound_error(unsigned int k)
99 {
100 std::cerr
101 << "tolerance error" << std::endl
102 << "at point: " << k << std::endl
103 << "error value: "<< dist_err << std::endl
104 << "bound: " << dist_bound << std::endl
105 << "angle error: " << angle_err
106 << " (" << angle_tol << ")" << std::endl;
107 }
108
109 public:
110 /*
111 * perform the actual conversion
112 * return true if the conversion is successful, false on the contrary
113 */
114 bool operator()()
115 {
116 // initialize the reference
117 const NL::Vector & coeff = fitter.result();
118 fit();
119 if ( !check_bound(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]) )
120 return false;
121 if ( !(make_elliptiarc()) ) return false;
122 return true;
123 }
124
125 private:
126 EllipticalArc& ea; // output elliptical arc
127 const curve_type & curve; // input curve
128 Piecewise<D2<SBasis> > dcurve; // derivative of the input curve
129 NL::LFMEllipse model; // model used for fitting
130 // perform the actual fitting task
131 NL::least_squeares_fitter<NL::LFMEllipse> fitter;
132 // tolerance: the user-defined tolerance parameter;
133 // tol_at_extr: the tolerance at end-points automatically computed
134 // on the value of "tolerance", and usually more strict;
135 // tol_at_center: tolerance at the center of the ellipse
136 // angle_tol: tolerance for the angle btw the input curve tangent
137 // versor and the ellipse normal versor at the sample points
138 double tolerance, tol_at_extr, tol_at_center, angle_tol;
139 Point initial_point, final_point; // initial and final end-points
140 unsigned int N; // total samples
141 unsigned int last; // N-1
142 double partitions; // N-1
143 std::vector<Point> p; // sample points
144 double dist_err, dist_bound, angle_err;
145};
146
147namespace detail
148{
149/*
150 * ellipse_equation
151 *
152 * this is an helper struct, it provides two routines:
153 * the first one evaluates the implicit form of an ellipse on a given point
154 * the second one computes the normal versor at a given point of an ellipse
155 * in implicit form
156 */
157struct ellipse_equation
158{
159 ellipse_equation(double a, double b, double c, double d, double e, double f)
160 : A(a), B(b), C(c), D(d), E(e), F(f)
161 {
162 }
163
164 double operator()(double x, double y) const
165 {
166 // A * x * x + B * x * y + C * y * y + D * x + E * y + F;
167 return (A * x + B * y + D) * x + (C * y + E) * y + F;
168 }
169
170 double operator()(Point const& p) const
171 {
172 return (*this)(p[X], p[Y]);
173 }
174
175 Point normal(double x, double y) const
176 {
177 Point n( 2 * A * x + B * y + D, 2 * C * y + B * x + E );
178 return unit_vector(n);
179 }
180
181 Point normal(Point const& p) const
182 {
183 return normal(p[X], p[Y]);
184 }
185
186 double A, B, C, D, E, F;
187};
188
189} // end namespace detail
190
191make_elliptical_arc::
192make_elliptical_arc( EllipticalArc& _ea,
193 curve_type const& _curve,
194 unsigned int _total_samples,
195 double _tolerance )
196 : ea(_ea), curve(_curve),
197 dcurve( unitVector(derivative(curve)) ),
198 model(), fitter(model, _total_samples),
199 tolerance(_tolerance), tol_at_extr(tolerance/2),
200 tol_at_center(0.1), angle_tol(0.1),
201 initial_point(curve.at0()), final_point(curve.at1()),
202 N(_total_samples), last(N-1), partitions(N-1), p(N)
203{
204}
205
206/*
207 * check that the coefficients computed by the fit method satisfy
208 * the tolerance parameters at the k-th sample point
209 */
210bool
211make_elliptical_arc::
212bound_exceeded( unsigned int k, detail::ellipse_equation const & ee,
213 double e1x, double e1y, double e2 )
214{
215 dist_err = std::fabs( ee(p[k]) );
216 dist_bound = std::fabs( e1x * p[k][X] + e1y * p[k][Y] + e2 );
217 // check that the angle btw the tangent versor to the input curve
218 // and the normal versor of the elliptical arc, both evaluate
219 // at the k-th sample point, are really othogonal
220 angle_err = std::fabs( dot( dcurve(k/partitions), ee.normal(p[k]) ) );
221 //angle_err *= angle_err;
222 return ( dist_err > dist_bound || angle_err > angle_tol );
223}
224
225/*
226 * check that the coefficients computed by the fit method satisfy
227 * the tolerance parameters at each sample point
228 */
229bool
230make_elliptical_arc::
231check_bound(double A, double B, double C, double D, double E, double F)
232{
233 detail::ellipse_equation ee(A, B, C, D, E, F);
234
235 // check error magnitude at the end-points
236 double e1x = (2*A + B) * tol_at_extr;
237 double e1y = (B + 2*C) * tol_at_extr;
238 double e2 = ((D + E) + (A + B + C) * tol_at_extr) * tol_at_extr;
239 if (bound_exceeded(0, ee, e1x, e1y, e2))
240 {
241 print_bound_error(0);
242 return false;
243 }
244 if (bound_exceeded(0, ee, e1x, e1y, e2))
245 {
246 print_bound_error(last);
247 return false;
248 }
249
250 // e1x = derivative((ee(x,y), x) | x->tolerance, y->tolerance
251 e1x = (2*A + B) * tolerance;
252 // e1y = derivative((ee(x,y), y) | x->tolerance, y->tolerance
253 e1y = (B + 2*C) * tolerance;
254 // e2 = ee(tolerance, tolerance) - F;
255 e2 = ((D + E) + (A + B + C) * tolerance) * tolerance;
256// std::cerr << "e1x = " << e1x << std::endl;
257// std::cerr << "e1y = " << e1y << std::endl;
258// std::cerr << "e2 = " << e2 << std::endl;
259
260 // check error magnitude at sample points
261 for ( unsigned int k = 1; k < last; ++k )
262 {
263 if ( bound_exceeded(k, ee, e1x, e1y, e2) )
264 {
265 print_bound_error(k);
266 return false;
267 }
268 }
269
270 return true;
271}
272
273/*
274 * fit
275 *
276 * supply the samples to the fitter and compute
277 * the ellipse implicit equation coefficients
278 */
279void make_elliptical_arc::fit()
280{
281 for (unsigned int k = 0; k < N; ++k)
282 {
283 p[k] = curve( k / partitions );
284 fitter.append(p[k]);
285 }
286 fitter.update();
287
288 NL::Vector z(N, 0.0);
289 fitter.result(z);
290}
291
292bool make_elliptical_arc::make_elliptiarc()
293{
294 const NL::Vector & coeff = fitter.result();
295 Ellipse e;
296 try
297 {
298 e.setCoefficients(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
299 }
300 catch(LogicalError const &exc)
301 {
302 return false;
303 }
304
305 Point inner_point = curve(0.5);
306
307 std::unique_ptr<EllipticalArc> arc( e.arc(initial_point, inner_point, final_point) );
308 ea = *arc;
309
310 if ( !are_near( e.center(),
311 ea.center(),
312 tol_at_center * std::min(e.ray(X),e.ray(Y))
313 )
314 )
315 {
316 return false;
317 }
318 return true;
319}
320
321
322
324 double tolerance, unsigned num_samples)
325{
326 make_elliptical_arc convert(ea, in, num_samples, tolerance);
327 return convert();
328}
329
330} // end namespace Geom
331
332/*
333 Local Variables:
334 mode:c++
335 c-file-style:"stroustrup"
336 c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
337 indent-tabs-mode:nil
338 fill-column:99
339 End:
340*/
341// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
Abstract curve type.
Various utility functions.
pair< double, double > Point
Definition parser.cpp:7
Various trigoniometric helper functions.
Bezier curve.
Adaptor that creates 2D functions from 1D ones.
Definition d2.h:55
Elliptical arc curve.
double c[8][4]
Elliptical arc curve.
@ Y
Definition coord.h:48
@ X
Definition coord.h:48
void normal(std::vector< Point > &N, std::vector< Point > const &B)
Various utility functions.
Definition affine.h:22
bool arc_from_sbasis(EllipticalArc &ea, D2< SBasis > const &in, double tolerance, unsigned num_samples)
bool make_elliptical_arc(EllipticalArc &ea, Point const &centre, Point const &initial, Point const &final, Point const &inner)
Bezier derivative(Bezier const &a)
Definition bezier.cpp:282
Point unit_vector(Point const &a)
bool are_near(Affine const &a1, Affine const &a2, Coord eps=EPSILON)
Piecewise< D2< SBasis > > unitVector(D2< SBasis > const &vect, double tol=.01, unsigned order=3)
int n
Definition spiro.cpp:57
Symmetric power basis curve.
size_t N
Definition curve.h:24
void dot(Cairo::RefPtr< Cairo::Context > &cr, double x, double y)